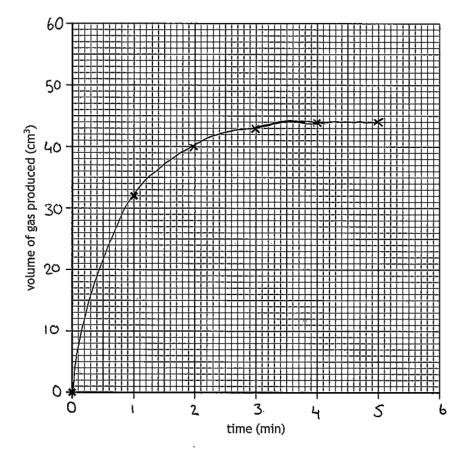
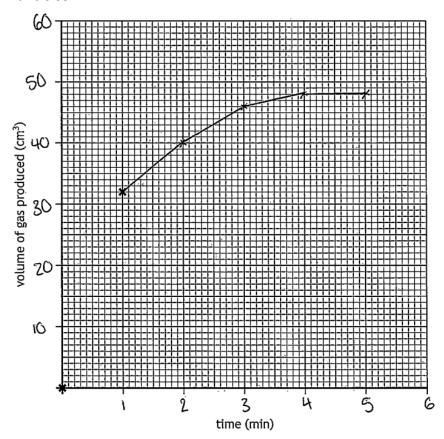
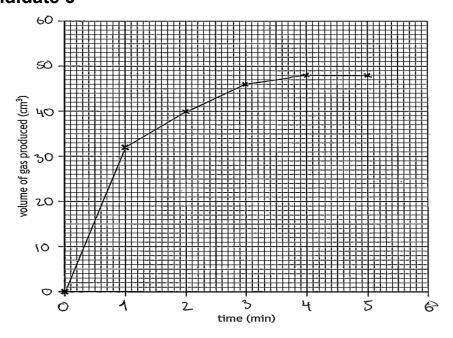
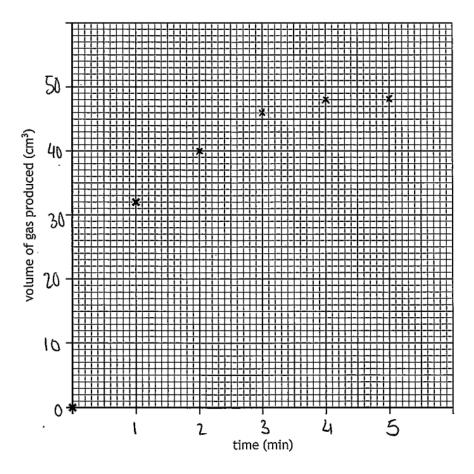

Candidate evidence

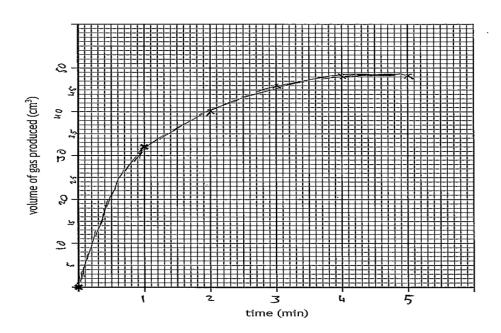
Question 1(b)(i)


Candidate 1




Candidate 2




Question 2(a)

Question 2(b)

Candidate 1

overage rate =
$$\frac{\Delta q \mu a n tity}{\Delta t i m a}$$

$$= \frac{16}{4}$$

$$= 4 \text{ cm}^3 \text{ min}^{-1}$$

Candidate 2

rate of reaction =
$$\frac{49 - 32}{4 - i} = \frac{16}{3} = 5.3$$

$$= 5.3 \text{ cm}^3 \text{ min}^{-1}$$

Question 3(e)(ii)

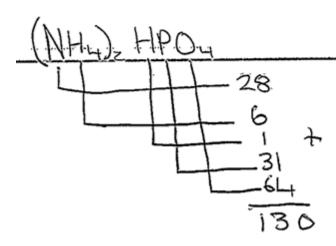
Candidate 1

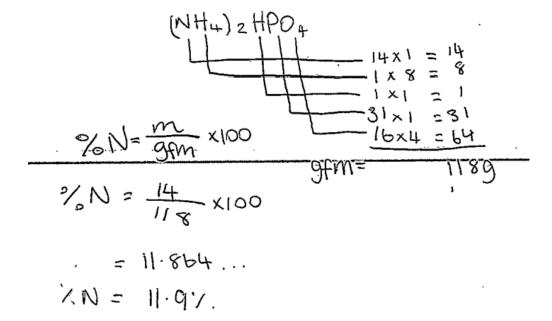
$$NK2 = 14K2 = 28$$
 $HK4K2 = 1K8 = 8$
 $HK1 = 1K1 = 1$
 $PK1 = 31K1 = 31$
 $OK4 = 16K4 = 64$
 132
 $OK4 = 132$

% mass =
$$\frac{m}{6FM} \times 100$$

= $\frac{14}{106} \times 100$
= $\frac{13.21\%}{200}$

$$GFM = 106$$
 $(NH_4)_2HPO_4$
 $16x4 = 64+$
 $31x1 = 31+$
 $1x1 = 1+$
 $1x4x2 = 8+$
 $14x2 = 28$
 106
 106
 106

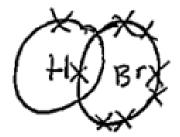

m × 100


9m= (NH4)2 MP04 10 \$28 P 1 20 D 64

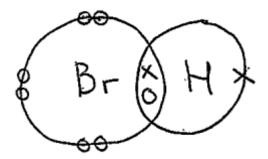
- 14 130 × 100

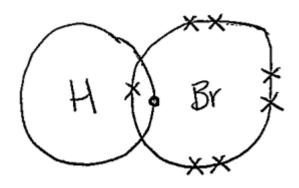
= 10,769 ...

= 10.8%


% by mass=
$$\frac{m}{GFM} \times 100$$
 $\frac{2}{18} \times 100$

= 11.111...


= 11.11%


Question 4(a)(ii)

Candidate 1

Candidate 2

Question 6(b)(iii)

Candidate 1

C= 4.18 kJ kg-1 °C-1

= 4,18 x 200 x 40.8 x 12

= 80.256 kJ

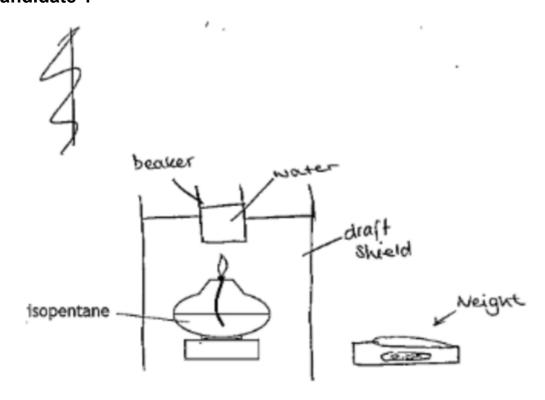
Candidate 4

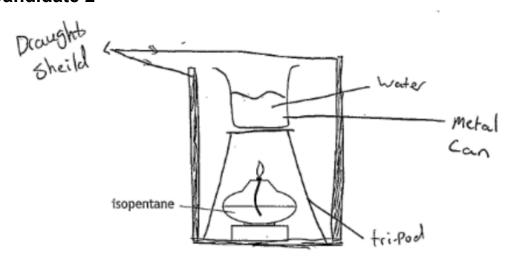
En = Cm AT

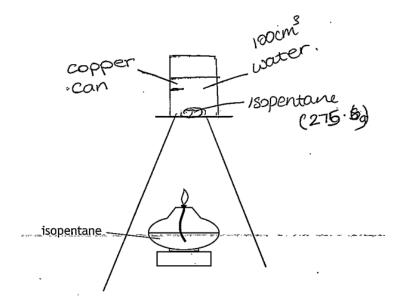
En = 274,8X 200 X 12 = 659520

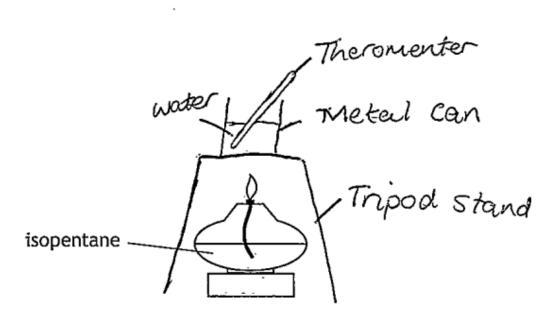
N=200 UT=35-23=12 C=

659,520 659,52kg

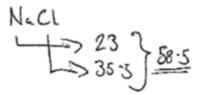

Candidate 5


En=cmat


 $E_h = 4.18 \times 0.2 \times 12$ = 10.032 kJ C = 4.18 M = 200g → 0.2kg Ot=12°C


Question 6(b)(iv)

Candidate 1



Question 7(a)(i)

Candidate 1

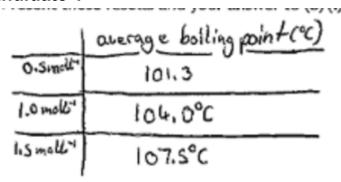
Nacc N=cv V=500 cm³ = 0.5 litres C=1.5 mol C¹ N=0.5 x1.5 = 0.075 mola m=nxGfM n=0.075mola NaCL Nax1=23x1=23 CLx1=35.5x1=35.5 58.5anu =56.5GFM

M=0.075x58.5 = 4.3875 = 4.399

Question 7(b)(i)

Candidate 1

(105+10++106)+3


Candidate 2

107 + 108 = 107.5°C

106,7°

Question 7(b)(ii)

Candidate 1

Candidate 2

0.5mol* [-1=101.3°C 1.0mol [-1=104.0°C 1.5mol [-1=400]106.6°C

ود جيد جيد دي	average boiling point	Sodium Chloride Solvinon (molt=1)		
,	106.7°C	1.5		
	104.0°C	1.0		
	101.3°C	0.5		

Candidate 4

5	<u> </u>	(175)	er.	(5)((5) - 5)(5)	
SP.	,	AUG	Boiling	11/109	
38	1.5 mar -'		200.00€		
多	1mo1-1	11	24.0°C		
Come	0.5 no1-1	10	01.3°C		
					

Concentrations	average boiling point
O.5 mol 1-1	101.3°C
1.0 mol 1-1	104.00

Question 8(e)

Candidate 1

When the reaction or has

Candidate 2

a Salt is made

Candidate 3

when an acid reacts with a substance to create a south solution with our a newtrel pH, by balancing H+ and OHions.

Candidate 4

a reaction when an action added to acid and base are combined to produce water and a Salt

Question 9(a)

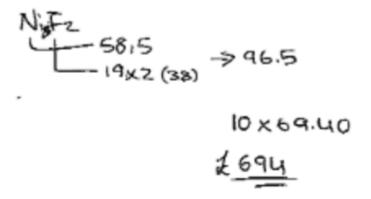
Candidate 1

deneral Componel with the Same Teneral Comula bouts a different Structural

Candidate 2

a molecule number of molecules with the some above number but deferred mass numbers

Candidate 3


Molecules with the same molecular formula but different structural formula.

Candidate 4

but different mouss numbers (same number of protons, different number of neutrons)

Question 9(c)(iii)(B)

Candidate 1

Candidate 2

$$\frac{35g}{10g} = 3.5g$$

 $f_{69.40} \times 3.5g = f_{242.90}$

Question 10(a)

Candidate 1

Several formula but different Etouchungh

Candidate 2

see similar chemical formula different chemical properties

Candidate 3

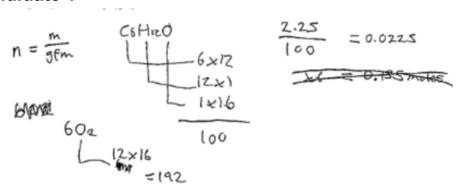
Mecules that can be identified by certain themled properties. They can be grouped.

Candidate 4

A family of molecules with similar chemical properties and similar structural formulae

Candidate 5

A group of elements that have similar chemical properties and that can be identified using a general formular


a family of compounds with the same general formula and similar Chemical structures.

Candidate 7

Homologous series is a group of compounds which share the same general formula and have similar chemical properties.

Question 11(c)

Candidate 1

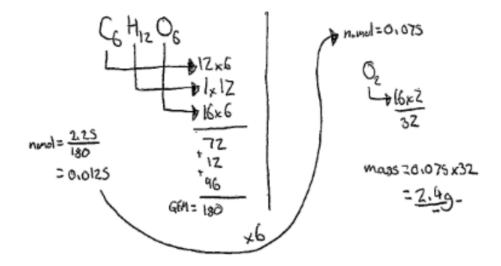
m=192 x \$480 0.0225

$$m=7$$
 $C_6H_{12}O_6$
 $M=2.25g$
 $C_6H_{12}O_6$
 $C_6H_{12}O$

m= 0.075 x 192 m= 14.4

Candidate 3

Calculate the mass, in grams, of oxygen required to react completely with 2.25 g of glucose,
$$C_0H_{12}O_6$$
.


$$C_0H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$$
glucose

Calculate the mass, in grams, of oxygen required to react completely with 2.25 g of glucose, $C_0H_{12}O_6$.

$$C_0H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$$
glucose
$$C_0H_{12}O_6 - 6CO_2 \rightarrow 6CO_2 \rightarrow$$

3

M= 2,25 X180 = 405 g

