Commentary on candidate evidence

The candidate evidence has achieved the following marks for each question.

Candidate 1

Question 1

- Marks 1 to 3 awarded
- Marks 4 to 6 awarded
- Mark 7 not awarded - general marking principle (j) highlights that fractions must be simplified.
- Mark 8 awarded

Candidate 2

Question 2

- Mark 1 awarded
- Mark 2 awarded
- Mark 3 awarded - the additional working is subsequent to the correct answer and according to general marking principle (I) is not penalised.

Candidate 3

Question 2

- Mark 1 awarded
- Mark 2 not awarded - the candidate has used an incorrect inequality.
- Mark 3 not awarded - it was common to see candidates overcomplicating the linear inequality although note 3 explains that this mark would have been available.

Candidate 4

Question 2

- Mark 1 awarded
- Marks 2 \& 3 not awarded - note 2 explains that these marks are not available for solving an equality.

Candidate 5

Question 3

- Mark 1 awarded
- Mark 2 awarded
- Mark 3 awarded
- Mark 4 not awarded - note 6 explains how to deal with a response which is left in degrees.
- Mark 5 awarded - on follow through.
- Mark 6 awarded - on follow through.
- Mark 6 awarded - many candidates left answers in fractions in terms of π.

Candidate 6

Question 4(a)

- Mark 1 not awarded - note 1 tells us that ' $d x$ ' is required to gain mark 1 .
- Mark 2 awarded - note 5 tells us not to penalise the continued presence of the integral sign.
- Mark 3 awarded - some candidates split their substitution into two parts.
- Mark 4 not awarded - error in the numerical processing.

Candidate 7

Question 4

- Mark 1 not awarded - note 1 tells us that ' $d x$ ' is required to gain mark 1 .
- Mark 2 awarded - note 5 tells us not to penalise the continued presence of the integral sign.
- Mark 3 not awarded - errors in the substitution.
- Mark 4 not awarded - further processing errors.
- Mark 5 awarded
- Mark 6 awarded
- Mark 7 not awarded - statements of ' $-\frac{16}{3}=\frac{16}{3}$, were common.

Candidate 8

Question 5

- Mark 1 awarded
- Mark 2 awarded
- Mark 3 awarded
- Mark 4 awarded
- Mark 5 not awarded - the mark is for expressing an inequality in standard quadratic form.
- Mark 6 awarded - for finding the roots.
- Mark 7 not awarded -Candidate C shows a similar response.

Candidate 9

Question 5

- Mark 1 awarded
- Mark 2 not awarded
- Mark 3 awarded
- Mark 4 awarded - on follow through.
- Mark 5 awarded
- Marks $6 \& 7$ not awarded - the candidate could have used the quadratic formula to gain further marks.

Candidate 10

Question 5(b)

- Mark 4 awarded
- Mark 5 awarded
- Mark 6 awarded - for finding the roots.
- Mark 7 not awarded - because of the inconsistency and lack of justification.

Candidate 11

Question 5(b)

- Mark 4 not awarded
- Mark 5 not awarded - because of the reversal of the inequality.
- Marks $6 \& 7$ not awarded - because this is not the solution of a quadratic inequality.

Candidate 12

Question 6

- Mark 1 not awarded
- Mark 2 awarded - Candidate C shows a similar response.
- Mark 3 not awarded - missing ' $+c$ '.
- Marks 4 \& 5 not awarded - note 2 explains that only marks 1 and 2 are available to candidates who omit ' $+c$ '.

Candidate 13

Question 6

- Mark 1 not awarded
- Mark 2 awarded - Candidate D shows a similar response.
- Mark 3 not awarded - missing ' $+c$ '.
- Marks 4 \& 5 not awarded - note 2 explains that only marks 1 and 2 are available to candidates who omit ' $+c$ '.

Candidate 14

Question 6

- Mark 1 awarded
- Mark 2 awarded
- Mark 3 not awarded - missing ' $+c$ '.
- Marks 4 \& 5 not awarded - note 2 explains that only marks 1 and 2 are available to candidates who omit ' $+c$ '. The missing ' $+c$ ' led to 'unusual' algebraic manipulations.

Candidate 15

Question 7

- Marks 1 to 5 not awarded - note 1 explains that marks are only available for processing within a valid strategy using $y=k x^{n}$.

Candidate 16

Question 7

- Mark 1 awarded
- Mark 2 awarded
- Mark 3 not awarded - processing error.
- Mark 4 awarded - on follow through.
- Mark 5 awarded - on follow through.

Candidate 17

Question 7

- Mark 1 not awarded
- Mark 2 not awarded - does not follow from the previous line of working but there is sufficient evidence of a valid strategy using $y=k x^{n}$.
- Marks 3 to 5 awarded - on follow through.

Candidate 18

Question 8

- Marks 1 to 3 not awarded - it was common to see trivial attempts at part (a).
- Mark 4 awarded
- Mark 5 awarded
- Mark 6 awarded
- Mark 7 not awarded
- Mark 8 not awarded
- Mark 9 not awarded

Candidate 19

Question 8(b)

- Mark 1 awarded
- Mark 2 awarded
- Mark 3 awarded
- Mark 4 not awarded - there are two errors leading to the 'correct' response.
- Mark 5 not awarded - $A^{\prime}(x)$ incorrectly placed.
- Mark 6 awarded

Candidate 20

Question 8(b)

- Mark 1 awarded
- Mark 2 awarded
- Mark 3 awarded
- Mark 4 not awarded
- Mark 5 not awarded - the ' - 0 +' in the table do not follow from the expressions given.
- Mark 6 not awarded

Candidate 21

Question 8(b)

- Mark 1 awarded
- Mark 2 awarded
- Mark 3 awarded
- Mark 4 awarded
- Mark 5 not awarded - because of the use of -15 in the nature table which does not fit into $0<a<15$.
- Mark 6 awarded

Candidate 22

Question 8(b)

- Mark 1 awarded
- Mark 2 awarded
- Mark 3 awarded
- Mark 4 awarded
- Mark 5 not awarded - because of the label $A(x)$.
- Mark 6 awarded

Candidate 23

Question 9

- Mark 1 awarded
- Mark 2 awarded
- Mark 3 - factorising is incorrect
- Marks 4 \& 5 not awarded - note 2 explains how to mark responses where the candidate's quadratic does not lead to two distinct real roots.
- Mark 6 awarded
- Mark 7 not awarded
- Marks 8 \& 9 not awarded - this is the equation of the larger circle (see note 10).

Candidate 24

Question 10

- Mark 1 not awarded - poor calculator skills and unnecessary working were common.
- Mark 2 not awarded - transcription error from the IAAF values used in the question.
- Marks 3 to 5 not awarded

Candidate 25

Question 10(b)

- Mark 2 awarded
- Marks 3 to 5 not awarded - invalid working was common.

Candidate 26

Question 10

- Mark 1 awarded - unnecessary working was common.
- Mark 2 awarded
- Mark 3 awarded
- Marks 4 \& 5 not awarded - many candidates struggled to convert the equation into logarithmic form.

