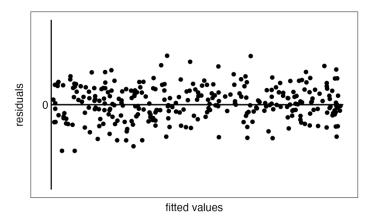
Advanced Higher Statistics

Residual Plots Comments

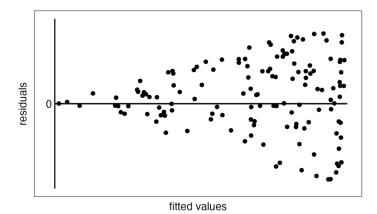

Purpose

This document is for teachers and lecturers, and it exemplifies the valid and acceptable comments that can be made for a variety of residual plots.

Statistical Inference		
Skill	Explanation	Suggested learning and teaching contexts
Assessing the linear association between two variables	 interpreting a residual plot 	 a residual plot is used to check the model assumptions that: E(ε_i) = 0 V(ε_i) = σ² (a constant for all X_i) Ideally, the plot of residuals against fitted values should show a random scatter centred on zero. If this is not the case (systematic pattern or variance of residuals is not constant), then the model may be inappropriate (perhaps non-linear), or the data may need to be transformed to restore constant variance.

Below is a summary of the valid comments for a collection of different residual plots.

Residual plot

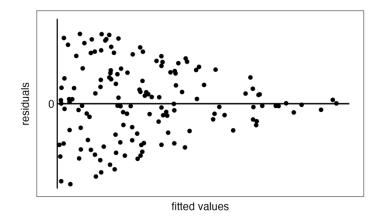


Valid comments

There is a random scatter of points, centred on zero. The distribution of residuals does not depend upon the fitted value.

 $E(\varepsilon_i) = 0$ for all x_i V(ε_i) = constant for all x_i

Residual plot

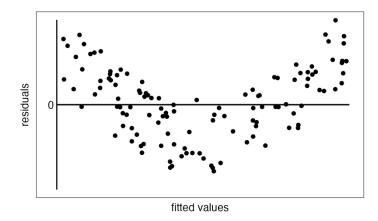


Valid comments

There is a 'funnel' shaped pattern, centred on zero. The variance increases as the fitted values increase.

 $E(\varepsilon_i) = 0 \text{ for all } x_i$ $V(\varepsilon_i) \neq \text{ constant for all } x_i$

Residual plot

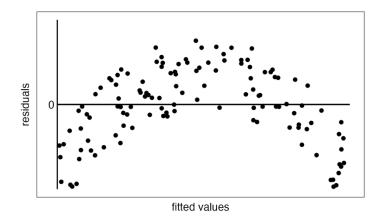


Valid comments

There is a 'funnel' shaped pattern, centred on zero. The variance decreases as the fitted values increase.

 $E(\varepsilon_i) = 0$ for all x_i $V(\varepsilon_i) \neq \text{constant for all } x_i$

Residual plot

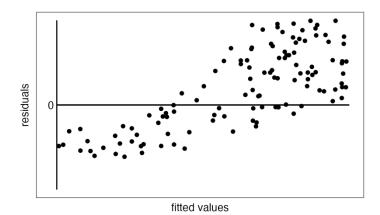


Valid comments

There is a pattern that is quadratic-shaped. The variance remains constant as the fitted values increase.

 $E(\varepsilon_i) \neq 0$ for all x_i V(ε_i) = constant for all x_i

Residual plot



Valid comments

There is a pattern that is quadratic-shaped. The variance remains constant as the fitted values increase.

 $E(\varepsilon_i) \neq 0$ for all x_i V(ε_i) = constant for all x_i

Residual plot

Valid comments

There is a 'funnel' shaped pattern, that is quadratic in shape. The variance increases as the fitted values increase.

 $E(\varepsilon_i) \neq 0$ for all x_i $V(\varepsilon_i) \neq \text{constant for all } x_i$