Candidate 1 evidence

QUESTION	• •
1.(a)	Upper Fence = Q3 + 1.5 IQR
	$= 13 + 1 \cdot S(13 - S)$
	= 2S
	LOWER FEACE = QI-1-SIQR
•	= S - 1 - S(13 - S)
	As min > Lower fince & max < Upper fine three
	are no outling for the 1980's duta det

Candidate 2 evidence

$$1QR = Q_3 - Q_1 = 13 - 5 = 8$$
1.(a)

$$1QR = Q_3 + 1.51QR = 13 + 1.5 \times 8 = 25$$

$$1Fence = Q_1 - 1.51QR = 5 - 1.5 \times 8 = -7$$

$$1Fence = are no outliers in the 1980s data$$

$$S_0 \quad there are no outliers in the 1980s data$$

$$set (a) \quad max. = 21 - 25 \quad e \quad min. = 2 > -7$$

Candidate 3 evidence

QUESTION
1.00 1980s - data is skewed, showing that
songs don't tend to stay that long
in the top 40 charts, only I song
made it past 20 weeks
- there is not much variation in the
data
-since this is a larger data set,
then even states shows that
there is not much bariation
1990s - the data is slightly skiwed
- there is some variation within
the data.
- data set is smaller smaller.
- adda on is subdird the
evely
2000s - the data is abilite Constanting
spread, meaning that there are scholl
that lasted long and didn't last long
in the charts. There is high variation

. ai c) as time goes on, we can see that songs stay in the Eatop charts for longer. . . .

NUMBER 1.(c) Box plot to help visualise comparisons: 1980° 1990" 2000" 9 3 12 15 18 21 24 27 30 33 In general songs during the 1980's have lower values. This means that during the 1980's song stayed at the top of the charts for less time. The 1980's also has the lowest standard deviation. This means that songs all tended to do the same amount of time in the top of the charts, unlike the 2000's with a large variance and range. This shows that there was lob of variation in the amount of time these songs stayed at the top and pohenhally a lot of songs that were diporent from the general trand. The difference in sample sizes, shows that there were more songs in the top cherts in the 1980's compared to the 1990's and 2000°. This is because there were 21. of songs picked Divar The same length of time, meaning the total. Songs is diquerent.

Candidate 4 evidence

Candidate 5 evidence

QUESTIC: NUMBER -there appears to be increasing variance over the years, which means songs are 1.(c) more likely to remain in top 40 charts for different periods of time from one another some muy only stay for a few weeks, while others last far longer, which whereas the time spent in top led used to be four more less varied -Some songs seem to be lasting far longer in the top to them they used to, which means the mean time spent in top 40 - The sample size has educed significantly during the study, which suggests that less Songs make it into the top 40, but they Stay there for longer periods of time. - the data also appears to be more uniformly distributed than it used to, suggesting that some songs can be far more successful them others.

Candidate 6 evidence

1.(c)	1100 0 10 19105 G 2000'S We
	see an increase in one average (both
	mean and median) number of weeks
	a song stays in the top 40's, so as time progresses songs remain in the top 40 for longer on average. 1980's we see a positive skew and as
	the years progress the skew starts to move more negative
	From 1980's to 1990's to 2000's we
	see a decrease in sample size, showing songs remain in the top 40's for more weeks
	The spread of values in 1980's is
	much less than that of 2000's.
	From 1980's to 1990's to 2000's
	we see an increase in the spread
	and variability of the data showing
	and the number of weeks a
	song should expect to be in the
	top 40 is becoming less consistent
	as the years progress, with the
	2000s having much more extreme values

Candidate 7 evidence

Candidate 8 evidence

The distribution of weeks spent by a chart has become gradually become more uniform." This means that the length of time that a sorry will spend in the charts is becoming to 1.(c) predictible. "Shown by increasing IQR over the 3 decades On average the length of him that a song will spend in the charts has increased, with the mean growing by more than three weeks and the medicion growing by 4 lactureen the 900 and 003 the decrease in Source size, may reflect the fact that there are less songs entering the top 40. his shows that reflects the fact that the number of early staying in the chartofot longer is rising as less songs are entering for the first time

Candidate 9 evidence

1.(d) (ii)

Candidate 10 evidence

The interval appeal (10.20, 15.20) will capture the true mean of the population with 95% confidence ie 95 out of 100 times

Candidate 11 evidence

1.(d)	that	the	true	mean	of	theis	data
	is capt	ured	957.	of	the	time.	I.e. the
	actual	mede	n of	the	data	will	lie within
	the vo	alves	10.2	and	15.2	957.	ot the
	time.						

Candidate 12 evidence

1.(d) Thone is a 95% chonce that the toneractual wear number of meets a 1940s song was in the top 40 is between 10.2 and 15.2 (coplined in the interval). If the data mas sompled at 100 times and an interval constructed, we would expect this the mean to be coptured by the interval 95 times.

Candidate 13 evidence

1.(d) (ii)	A compidence interval is a sange of values
	where the population mean walk lie
	A confidence interval was a sample (smaller group from whole population) to predict where the mean (average) of that whole population is.
	It is a range of values in which the mean has a 95% (in the example above) chance of being.

Candidate 14 evidence

```
two tailed test

1.(e)

p-value is high

0.4042 > 0.085

0.4042 > 0.810

Accept plualue Ho at Si.

and 107. Levels, suggesting

that he mie difference for

number of weeks by in top 40 for songs

in 2000 and 2010s is 0.
```

NUMBER The teaders group it as nost affected by the change. This is because they have a small comple see compensively, so just boking at numbers they daily stand out, however pecentage it is clear by ore the most party to wear a watch. 2.(c)

Candidate 15 evidence

Candidate 16 evidence

2.60 the teachers, this is because mere is a far smaller ratio of teachers to pupils, so the values need to be enhanced greatly. Less teachers in the school compared to no. of pupils. 92. The number of teachers wearing a watch has to be multiplied to achieve percentage.

Candidate 17 evidence

2.(e)
2.(e)
2.(e)
2.(e)
P=
$$\frac{n_1 p_1 + n_2 p_2}{n_1 + n_2} = \frac{73 + 54}{224 + 206} = 0,303$$

 $P = \frac{n_1 p_1 + n_2 p_2}{n_1 + n_2} = \frac{0.05054...}{(0.1305)(9.651)(9.0095)}$
 $Z = \frac{P_1 - P_2}{\sqrt{P_2(\frac{1}{n_1} + \frac{1}{n_2})}} = \frac{0.05054...}{(0.1305)(9.651)(9.0095)}$
 $= 2.03$
 $P(2 > 2.03) + P(2(-2.03)) =$
 $= 2 \times P(2 > 2.03) = 2 \times (1 - P(2(203)))$
 $= 2 \times (1 - 0.19488) = 0.0424 \approx 0.042$

Candidate 18 evidence

QUESTION NUMBER	
2.(e)	Ho: 155-151 =0
	Hi: Pro - Psi = 70
	$R_{g} = \frac{54}{206} = 0.262$ $R_{21} = 0.353$
	$\gamma \sim N(\gamma_1, \gamma_2)$ $\gamma \sim N(\gamma_1, \gamma_2)$ $z_{vid} = 001.96$ n p + hp = 34 + 79 n + h = 430
-	First
	$\overline{z} = \underbrace{0.261 - 0.353}_{0.0446} \overline{z} = \underbrace{-0.091}_{0.0446}$
	$\int 0.308 \times 0.641 \left(\frac{1}{3} \times \frac{1}{300} \right) = \frac{1}{2} 2.03$
	J(2.03)= 0.9788
	J. 1= 1-0.9788
	Je=1-0.9788 = 0.0212
	p=0.042

Candidate 19 evidence

QUESTION	
2.(e)	40: Proportion of worken wearers SI = 55
	Hi proportion " " " sl = 55
	Testat 5% level
	P-P Proportion SI=0.35
	210 Portouse
	V994 (+++)
	0.35-0.23
	P= 74 ×0.35 + 54 ×0.26 10000 = 0.31
	2-at 54
	0.35-0.20
	0 > (74 + 34)
1	

Candidate 20 evidence

QUESTION NUMBER	
2.(e)	HO! $P_1 = P_2$ HI: $P_1 \times P_2$
-	$P_1 = \frac{79}{224}$ $P_2 = \frac{54}{206}$
	$\frac{P_1 - P_2}{P_1 - P_2} = \frac{P_1 + P_1 + P_2 P_2}{P_1 + P_2}$
	$VPq(f_1, f_2) = 224*(3) + 206(5)$
	$\frac{79}{224} - \frac{54}{206}$ = 0.3
	V0.70.3(224+200) 9= ANP 1-0.3
	=2.03 =0-07
- ,	P-value

Statistics (Advanced Higher)

Candidate evidence

Question Paper 2

Candidate 21 evidence

QUESTION NUMBER	Ho: No association between prevalence of injection and the sex of the fish. Hs: There is an association.	DO NOT WRITE IN THIS MARGIN
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
	N=1 Xi = 6.635 So we reject the, meaning there is an association between prenelance of infection and sex of sist.	

Candidate 22 evidence

2.(c) P(X = 2) + P(X = 1.7) P(X = 1.7) P(X = 2) + P(X = 1.7) P(X = 1.7)

Candidate 23 evidence

3.
$$(\frac{5}{2}) = \frac{5!}{2! \cdot 3!} = 10$$

$$P(T=0) = \frac{4}{10}$$

$$P(T=2) = \frac{2}{10} = \frac{1}{5}$$

$$P(T=4) = \frac{4}{10} = \frac{2}{5}$$

$$P(T=6) = \frac{2}{10} = \frac{4}{5}$$

$$P(T=6) = \frac{1}{10}$$

$$\frac{1}{10}$$

$$\frac{1}{10} = \frac{1}{10}$$

$$\frac{1}{10} = \frac{1}{10}$$

$$\frac{1}{10} = \frac{1}{10}$$

$$E(T) = \frac{1}{200} o(0,1) + 2(00) + 4(0,1) + 6(0,2) + 8(0,1) =$$

$$= 4$$

$$V(T) = (0 = 4)^{2} o_{11} + (2 - 4)^{2} o_{12} + (0)^{2} o_{11} =$$

$$= 4 - (6 - 4)^{2} o_{12} + (8 - 4)^{2} o_{11} =$$

$$= 4 - (8 - 4)^{2} = 12$$

Candidate 24 evidence

5.(b) (et
$$D = d$$
 ifference between French and
German marks (French-German)
Data:
French 67 83 71 59 49 89 42 55 77
German 64 82 71 62 42 85 39 50 75
Difference 3 1 0 -3 7 4 3 5 2
Assume the differences Differenceally
distributed.
 $D = N(A, \sigma^2)$
Ho: $M = O$
Hi: $M \neq O$
Assume the to be true.
 $D = 5\%$ 2-tailed test
we have $d = \frac{3+1+0-3+7+4+3+5+7}{9} = 2444$
 $S_{n-1} = 7.92$
(et $\overline{D} = mean$ difference inscores for 9 ils
pupils

5.(b)
cont.
$$\overline{D} - N(\mu, \frac{\sigma^{-3}}{q})$$

 $\overline{D} - \frac{M}{\sqrt{2}} \sim N(0, 1^{2})$
 $\overline{D} - \frac{M}{\sqrt{2}} \sim N(0, 1^{2})$
 $We estimate o from sni, and so use
a to distribution.
 $\overline{D} - \frac{M}{\sqrt{2}} \sim t_{8}$
 $\overline{J} - \frac{M}{\sqrt{2}} \sim$$

Candidate 25 evidence

5.(b) Ho: there is no difference in population means $\bar{X}_{i} = 1$ H: there is a difference in population means $\bar{X}_{i} \neq 1$ $X_{F} = 65.78$ $V(\bar{X})_{c} = 456.8.8898 - 4327$	X2
$X_{F_{4}} = 65.78$ $V(x)_{c} = 456.888 - 4327$ $X_{F_{4}} = 63.33$ = 221.9	'+0c8
$V(x)_{4} = 4260 - actor 010$ OF = 14.9 = 249.3	.7
5 = 15.8	
$\frac{65.78 - 63.33}{\sqrt{\frac{114.9^2}{9} + \frac{15.8^2}{9}}} = 0.3386.$ = 0.34	1
0.34 (1.96 so we don't reject Ho meaning there is evidence that there is no digerence between french and german marks.	
Assume population is normally distributed Assume mor events independent of eacho ther.	-

Candidate 26 evidence

$$E(x) = np$$

$$E(x) = np$$

$$F(x) = \frac{np}{n} \quad f(x) = \frac{np}{n}$$

$$E(x) = np(1-p)$$

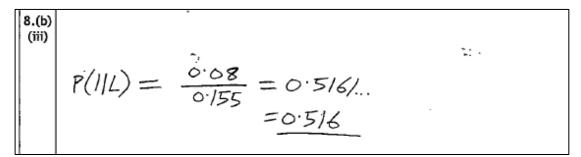
$$V(x) = np(1-p)$$

$$V(x) = np2 \quad f(x) = \frac{npq}{n^2}$$

$$V(x) = \frac{npq}{n^2}$$

Candidate 27 evidence

8.(b)
(i)
$$\frac{1/s \times 2/s}{\frac{1}{s \times 2/s} + \frac{1}{s \times 3/s}} = 0.4$$


SQA | www.understandingstandards.org.uk

Candidate 28 evidence

(i)
(ii)
(iii)

$$40\%$$
 chonce for lor4
 40% 37.5%
 40% 37.5%
 40% 37.5%
 15.5% chonce
 0 5.5% chonce
 0 5.5% chonce

Candidate 29 evidence

Candidate 30 evidence

QUESTION if n > 20, the sample mean can be approximated by the normal dishibution ... 9.(a) if x has $E(x) = \mu$, and $v(x) = \sigma^2$, a sample mean wath of size (n) can be approximated... $\tilde{X} \sim N(\mathcal{M}, \frac{\sigma^2}{n})$

Candidate 31 evidence

PUESTION NUMBER 9.(a) Central limit theory states, two Suthiciently large values of $n \ge 20$ then a approximation can be used Thermal) $\overline{V} \sim N(M, \frac{\sigma^2}{N})$

Candidate 32 evidence

9a	The Contral Limits Theorem states that the distribution of sample means from a povent population which is
	sample means from a povent population which is
	normally distributed is itself normally distributed.
	Additionally if the sample is sufficient large (the sample
	size n 220) then the distribution of sample many
	is approximately normally distributed regardless of the
	distribution of the povent population. The for a
	parent population equ with mean N and variance or?
	the mean of a sample of size in has mean p
	and variance of $\frac{\sigma^2}{n}$

Candidate 33 evidence

9.(b)	x=45 Sample 400000 means reas
	= 1.64 nearnedday de follow a normal
	x=52.6 Variables music be independent.
	σ ² = 103·25
	Ho: mean bottern width = 30 Hi: mean battern width > 50
	$P(Z > \frac{52 \cdot 6 - 50}{\sqrt{103 \cdot 25}})$ X~N (50, 103 \25*)
	P(Z>0.256)~0.26
	\$2(8-2-83)= \$(0.26)= 0.6026
	Evidence to 1.64>0.6026 reject Hi as at
	the 5% significance level the mean
1	boutten with is not

Candidate 34 evidence

9.(b)	HO : mean battery Width > 50 mm ×~~~ (52.6, 103-23) HI : Mean battery Width > 50 mm
	Halled test at 5% Z=1.64
	$z > \frac{30 - 52.6}{\sqrt{\frac{103.25}{45}}} = -1.7165$
	1- \$ (1.17165)
	1- 6.8790
	= 0.121
	1.69 > 0.121 SO Accept HO, the mean battery Width = somm.
	- The wooden batters are normally distributed

Candidate 35 evidence

9.(b)
Ho:
$$\mu = 50 \text{ mm}$$

 $H_1: \mu > 50 \text{ mm}$
(Assume batter matter are independent)
 $Z = \frac{52:6-50}{103.25} = 0.0251...$
 $= 0.025$
 $0.025 < 1.64 = > do not reject Ho$
 $\Rightarrow mean batter midther more than 50 mm$

Candidate 36 evidence

10.(a)	Hipped H= And assuming constant unionce remons are independent
-	Harroz # adam and mean is o be heigh of the states
	Ho: B=0 $E=\frac{b\sqrt{5x_{7c}}}{s}$ $b=0.1661$ H: B=0 $S=0.9$
	Dig \$ 3.03
	CUE (5%. 2 tailed dfead) = 2776 Shall 3.0872-276 we reject Ho and conclude the slope parameter is not a so there is association between alerths and exposure at the SK. level
	b= 46.29 278.61 = 0.1601
	$S = \frac{S_{77} - \frac{S_{75}}{S_{77c}}}{S_{77c}} = 0.9 = \frac{46.20^2}{278.61}}{4}$

$$\frac{\text{destron}}{\text{NUMMER}}$$

$$\frac{\text{Hotp20}}{\text{Hotp20}}$$

$$\frac{\text{Hotp20}}{\text{Cont.}}$$

$$\frac{10.(a)}{\text{C2} 20.7838}$$

$$\frac{12.20.7852}{\text{C2} 20.7852}$$

$$\frac{12.20.7876}{\text{C2} 20.776}$$

$$\frac{12.20.776}{\text{C2} 20.776}$$

$$\frac{12.20.776}{\text{C2} 20.776}$$

$$\frac{12.20.776}{\text{C2} 20.776}$$

$$\frac{12.20.776}{\text{C2} 20.776}$$

$$\frac{12.20.776}{\text{C2} 20.776}$$

$$\frac{12.20.776}{\text{C2} 20.776}$$

Candidate 37 evidence

11.(a)
(ii) Ho: no difference in median veaction
times
H₁: difference in median veaction
times.

$$W = min (Wm, m(mtn+1)-blu)$$

 $W_m = 89$
 $= min (89, 10(10+10+1)-89)$
 $= min (89, 121)$
 $= 89$
 $W_m = E(W) = \frac{1}{2}m(m+n+1)$
 $= \frac{1}{2}(121)$
 $= 60.5$
 $V(W) = \frac{1}{12}nm(m+n+1)$
 $= \frac{1}{12} \times 10 \times 10(10+10+1)$
 $= 175$
 $SD(W) = 13.2288$
 $P(E(W) = Wm) = \frac{1000}{13.2288}$
 $+\frac{10}{2}(2.1544)$
 $= 10.9842$
 $= 0.0158$
Reject Ho, 0.0158 < 0.05 so evidence
at 52. level that there is a difference
in median reaction times.

Candidate 38 evidence

11.00
$$A \sim N(2:5,0.5)$$
 $J \sim N(2:0,0.3)$
 $P(A < J) = P(J - A) > 0$
 $J - A = D$ $D \sim N(0.5, 0.8)$
 $P(J - A) > 0 = P(D > 0)$
 $= P(Z > \frac{0 - 0.5}{J 0.8})$
 $= P(Z > (-0.56))$
 $= \frac{1}{-0.2877}$
 $= 0.7/23$