Question 1

Candidate 1

1. $y = 4x \tan 2x$ $\frac{dy}{dx} = 7 \tan 2x + 4x (2scc^2 2x)$ $\frac{dy}{dx} = 7 \tan 2x + 14x sec^2 2x$

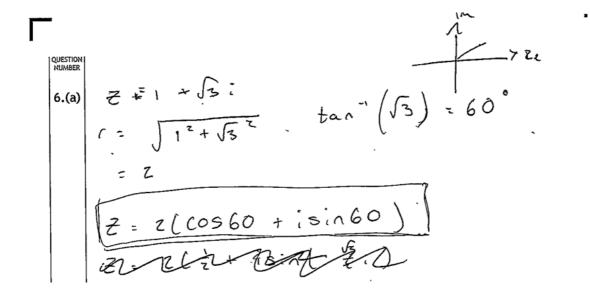
Candidate 2

QUESTION NUMBER

1. $y = 7 \times \tan 2 \times c$ $y = 7 \times \cot 2 \times c$ $y = 2 \tan 2 \times c \times c$ $y = 2 \tan 2 \times c \times c$ $y = 2 \tan 2 \times c \times c$ $y = 2 \tan 2 \times c \times c$ $y = 2 \tan 2 \times c \times c$ $y = 2 \tan 2 \times c \times c$ $y = 2 \tan 2 \times c \times c$ $y = 2 \tan 2 \times c \times c$ $y = 2 \tan 2 \times c \times c$ $z = 7 \tan 2 \times c \times c$ $z = 7 \tan 2 \times c \times c$ $z = 7 \tan 2 \times c \times c$ $z = 7 \tan 2 \times c \times c$ $z = 7 \tan 2 \times c \times c$ $z = 7 \tan 2 \times c \times c$ $z = 7 \tan 2 \times c \times c$ $z = 7 \tan 2 \times c \times c$ $z = 7 \tan 2 \times c \times c$ $z = 7 \tan 2 \times c \times c$ $z = 7 \tan 2 \times c \times c$ $z = 7 \tan 2 \times c \times c$ $z = 7 \tan 2 \times c$ z =

1. $\frac{dy}{dx} = 2x \tan 2x + 4x \sec^2 2x$

Question 3


QUESTION NUMBER	$ \begin{bmatrix} 1 & -3 & 1 & 1 & -1 \\ 3 & -2 & 4 & 1 & 11 \\ 4 & 2 & 1 & 15 \end{bmatrix} $ $ \begin{bmatrix} R_2 - 3R_1 \\ R_3 - R_1 \end{bmatrix} $
	$ \begin{bmatrix} 1 & -3 & 1 & -1 \\ 0 & 7 & 1 & 14 \\ 0 & 7 & 1 & 16 \end{bmatrix} $ $ \begin{array}{c} R3 - Rz \end{array} $
	[1 -3 1 -1] [0 7 1 14] [0 0 0 2] : the system is a resonsistant in consistant in consistant

redundancy 00010 inconsistentcy 00 5010 $\begin{pmatrix} 1 & -3 & 1 & | & -1 \\ 3 & -2 & 4 & | & 4 \\ 1 & 4 & 2 & | & 15 \end{pmatrix} \begin{pmatrix} R_2 - 3R_2 & = 3 - 3(i) = 0 \\ -2 - 3(-3) = 4 \\ 4 - 3(i) = 1 \\ |1 - 3(-1) = 14 \end{pmatrix}$ $\begin{cases} 1 & -3 & 1 & -1 \\ 0 & 4 & 1 & 14 \\ 0 & 7 & 1 & 16 \end{cases}$ $4R_3 - 7R_2$ 4(1) - 7(1) = -3 $= \begin{pmatrix} 1 & -3 & 1 & -1 \\ 0 & 4 & 1 & 14 \\ 0 & 0 & -3 & -34 \end{pmatrix}$ 4(16)-7(14)=64-98 =-34. results in a unique solution. $Z = \frac{34}{3}$. 4y + Z = 14 $4y + \frac{34}{3} = 14$ $4y = \frac{42}{3} - \frac{34}{3}$ $4y = \frac{42}{3} - \frac{34}{3}$

R2-R3 0 0 0 : 2)
This system whomas reduced as the whole of the bottom line works becomes zeros

Question 6(a)

Candidate 7

QUESTION NUMBER

6.(a)
$$Z = 1 + \sqrt{3}i$$

$$= 1 + \sqrt{3}i$$

$$= 1 + \sqrt{3}i$$

$$= 2 + \sqrt{3}i$$

$$= 60 \text{ or } \frac{\pi}{3}$$

$$= 2 + \sqrt{3}i$$

$$= 60 \text{ or } \frac{\pi}{3}$$

$$= 2 + \sqrt{3}i$$

$$= 60 \text{ or } \frac{\pi}{3}$$

$$= 2 + \sqrt{3}i$$

$$= 60 \text{ or } \frac{\pi}{3}$$

$$= 2 + \sqrt{3}i$$

$$= 60 \text{ or } \frac{\pi}{3}$$

$$= 2 + \sqrt{3}i$$

$$= 60 \text{ or } \frac{\pi}{3}$$

$$= 2 + \sqrt{3}i$$

$$= 60 \text{ or } \frac{\pi}{3}$$

$$= 2 + \sqrt{3}i$$

$$= 60 \text{ or } \frac{\pi}{3}$$

$$= 2 + \sqrt{3}i$$

$$= 60 \text{ or } \frac{\pi}{3}$$

$$= 2 + \sqrt{3}i$$

$$= 2 + \sqrt{3}i$$

$$= 60 \text{ or } \frac{\pi}{3}$$

		2/53
QUESTION NUMBER	× M	60
6.(a)	Z= 1+13i	0 = tar : 13/1
	$ V = \sqrt{1^2 + \sqrt{3}^2}$	0 = 7/3
	₹ √4	ag z = T/3
	= 2	
	Z= r2 (sortion	
	$Z = \Gamma^2 \left(\cos^2 \frac{2\pi}{3} + \sin^2 \frac{2\pi}{3} \right)$	

Question 7(a)

ENTER NUMBER OF TAX ADDITIONAL SPACE FOR ANSWERS

$$\frac{3}{15} + 12 + 10 = \frac{1}{3} (n^3 + 6n^2 + 5)$$

$$\frac{3}{15} + 12 + 10 = \frac{1}{3} (n^2 + 6n + 5)$$

$$\frac{3}{15} + 12 + 10 = \frac{1}{3} (n^2 + 6n + 5)$$

$$\frac{3}{15} + 12 + 10 = \frac{1}{3} (n^2 + 6n + 5)$$

$$\frac{3}{15} + 12 + 10 = \frac{1}{3} (n^2 + 6n + 5)$$

$$\frac{3}{15} + 12 + 10 = \frac{1}{3} (n^2 + 6n + 5)$$

$$\frac{3}{15} + 12 + 10 = \frac{1}{3} (n^2 + 6n + 5)$$

$$\frac{3}{15} + 12 + 10 = \frac{1}{3} (n^2 + 6n + 5)$$

$$\frac{3}{15} + 12 + 10 = \frac{1}{3} (n^2 + 6n + 5)$$

$$\frac{3}{15} + 12 + 10 = \frac{1}{3} (n^2 + 6n + 5)$$

$$\frac{3}{15} + 12 + 10 = \frac{1}{3} (n^2 + 6n + 5)$$

$$\frac{3}{15} + 12 + 10 = \frac{1}{3} (n^2 + 6n + 5)$$

$$\frac{3}{15} + 12 + 10 = \frac{1}{3} (n^2 + 6n + 5)$$

$$\frac{3}{15} + 12 + 10 = \frac{1}{3} (n^2 + 6n + 5)$$

$$\frac{3}{15} + 12 + 10 = \frac{1}{3} (n^2 + 6n + 5)$$

$$\frac{3}{15} + 12 + 10 = \frac{1}{3} (n^2 + 6n + 5)$$

$$\frac{3}{15} + 12 + 10 = \frac{1}{3} (n^2 + 6n + 5)$$

$$\frac{3}{15} + 12 + 10 = \frac{1}{3} (n^2 + 6n + 5)$$

$$\frac{3}{15} + 12 + 10 = \frac{1}{3} (n^2 + 6n + 5)$$

$$\frac{3}{15} + 12 + 10 = \frac{1}{3} (n^2 + 6n + 5)$$

$$\frac{3}{15} + 12 + 10 = \frac{1}{3} (n^2 + 6n + 5)$$

$$\frac{3}{15} + 12 + 10 = \frac{1}{3} (n^2 + 6n + 5)$$

$$\frac{3}{15} + 12 + 10 = \frac{1}{3} (n^2 + 6n + 5)$$

$$\frac{3}{15} + 12 + 10 = \frac{1}{3} (n^2 + 6n + 5)$$

$$\frac{3}{15} + 12 + 10 = \frac{1}{3} (n^2 + 6n + 5)$$

$$\frac{3}{15} + 12 + 10 = \frac{1}{3} (n^2 + 6n + 5)$$

$$\frac{3}{15} + 12 + 10 = \frac{1}{3} (n^2 + 6n + 5)$$

$$\frac{3}{15} + 12 + 10 = \frac{1}{3} (n^2 + 6n + 5)$$

$$\frac{3}{15} + 12 + 10 = \frac{1}{3} (n^2 + 6n + 5)$$

$$\frac{3}{15} + 12 + 10 = \frac{1}{3} (n^2 + 6n + 5)$$

$$\frac{3}{15} + 12 + 10 = \frac{1}{3} (n^2 + 6n + 5)$$

$$\frac{3}{15} + 12 + 10 = \frac{1}{3} (n^2 + 6n + 5)$$

$$\frac{3}{15} + 12 + 10 = \frac{1}{3} (n^2 + 6n + 5)$$

$$\frac{3}{15} + 12 + 10 = \frac{1}{3} (n^2 + 6n + 5)$$

$$\frac{3}{15} + 12 + 10 = \frac{1}{3} (n^2 + 6n + 5)$$

$$\frac{3}{15} + 12 + 10 = \frac{1}{3} (n^2 + 6n + 5)$$

$$\frac{3}{15} + 12 + 10 = \frac{1}{3} (n^2 + 6n + 5)$$

$$\frac{3}{15} + 12 + 10 = \frac{1}{3} (n^2 + 6n + 5)$$

$$\frac{3}{15} + 12 + 10 = \frac{1}{3} (n^2 + 6n + 5)$$

$$\frac{3}{15} + 12 + 10 = \frac{1}{3} (n^2 + 6n + 5)$$

$$\frac{3}{15} + 12 + 10 = \frac{1}{3} (n^2 + 6n + 5)$$

$$\frac{3}{15} + 10 = \frac{1}{3} ($$

7.(a)
$$\sum_{r=1}^{n} (r^{2} + 3r)$$

$$= \sum_{r=1}^{n} r^{2} + 3\sum_{r=1}^{n} r^{2}$$

$$= \frac{n(n+1)(2n+1)}{6} + 3\frac{n(n+1)}{2}$$

$$= \frac{n(n+1)(2n+1)}{6} + 3\frac{n(n+1)}{2}$$

$$= \frac{n(n+1)(2n+1)}{6} + 4\frac{n(n+1)}{6}$$

$$= \frac{n^{2} + n(2n+1)(2n+1)}{6} + 4\frac{n^{2} + 4n}{6}$$

$$= \frac{2n^{3} + n^{2} + 2n^{2} + n + 4n^{2} + 4n}{6}$$

$$= \frac{2n^{3} + 10n^{2} + 2n^{2} + 10n}{6}$$

$$7a 2n^{3} + 10n^{2} + 2n^{2} + 10n$$

$$= Ru(2n^{3} + 12n^{2} + 10n)$$

$$= n(2n^{2} + 12n + 10)$$

$$= 2n(n^{2} + 6n + 5)$$

$$= \frac{1}{3}n(n+1)(n+5)$$

7.(a)
$$\sum_{k=1}^{n} (r^{2}+3r)$$

$$= \frac{1}{6} (n^{2}+n)(2n+1) + \frac{3}{2}(n^{2}+n)$$

$$= \frac{1}{6} (2n^{2}+n)(2n+1) + \frac{3}{2}(n^{2}+n)$$

$$= \frac{1}{6} (2n^{2}+n)(2n^{2}+n) + \frac{3}{2}(n^{2}+n)$$

$$= \frac{1}{6} (2n^{2}+n)(2n^{2}+n) + \frac{3}{2}(n^{2}+n)$$

$$= \frac{1}{6} (2n^{2}+n)(2n^{2}+n)$$

$$= \frac{1}{6} (2n^{2}+n)(2n^{2$$

Question 8(b)

Candidate 13

S

8.(b)	À 13	oddj	^ ~	- (div.	59	Ц
	ΛεZ	te+l			7	ナ トレン で	267 = ur
	(Zfr+)) ~ - 1			7	2221	= 2h
	422+		- Į			121	
	= 4 h 2	+4 R					
	1= 4 (tc	+ FC)	, -	d: v	isibl	e 15	9
	N. Control of the con		ч,	tru	e		
						-	7

8.(b) let
$$n=k+1$$
 prove directly that n^2-1 is divisible by 4.

$$4(k+1)^2-1$$

$$4\left(k^2+2k+1-1\right)$$

$$=4\left(k^2+2k\right)$$

$$=4(k+2)$$

$$=4$$

Candidate 15 Q1

8.(b) b.) n = 4h + 1 $(4h + 1)^{2} - 1$ $= 16h^{2} + 8h + 1 - 1$ $= 16h^{2} + 8h$ = 4both values (constants) an divisible by 4 thunform statement is true.

Question 9

Candidate 16 S1

QUESTION NUMBER. 9.(a)	A = (05 = - Sin =) Sin = - Cos =)
9.(b) (i)	$AB = \begin{pmatrix} 0.52 & -5.11.25 \\ 5.11.25 & 0.52 \\ -\frac{5}{2} & 0.52 \\ -5$
9.(b) (ii)	$\alpha = \frac{3}{2}$
9.(c)	$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} (AB)^{N} = I$ $\vdots N = \Delta$