# **Candidate 1: Identification of an Unknown**

## <u>Results</u>

|      |                        | Repeats | Replicate 1   | Replicate 2   | Control       |
|------|------------------------|---------|---------------|---------------|---------------|
|      |                        |         |               |               | using         |
|      |                        |         |               |               | butanone      |
|      | Colour                 |         | clear,        | clear,        | clear,        |
|      |                        |         | colourless    | colourless    | colourless    |
|      | State at 25 °C         |         | liquid        | liquid        | liquid        |
|      | Smell                  |         | solvent smell | solvent smell | solvent       |
|      |                        |         |               |               | smell         |
|      | рН                     |         | 7             | 7             | 7             |
|      | Saturation             |         | Saturated     | Saturated     | Saturated     |
|      | Polarity               |         | Immiscible in | Immiscible in | Immiscible    |
|      |                        |         | water         | water         | in water      |
|      | Flammability           |         | burns with    | burns with    | burns with    |
|      |                        |         | clear flame,  | clear flame,  | clear flame,  |
|      |                        |         | vapour        | vapour        | vapour        |
| (0   |                        |         | flammable     | flammable     | flammable     |
| ties | Density:               |         |               |               |               |
| bei  | Mass of beaker (g)     | 1       | 55.3662       | 52.3475       | 52.2249       |
| prc  |                        | 2       | 55.3623       | 52.3212       | 52.2753       |
| ical |                        | 3       | 55.3765       | 52.3560       | 52.2249       |
| syr  | Mass of beaker and     | 1       | 95.4832       | 92.4396       | 92.2318       |
| E    | 50ml of organic        | 2       | 95.5323       | 92.3129       | 92.3249       |
|      | compound (g)           | 3       | 95.4832       | 92.4612       | 92.2138       |
|      |                        |         |               |               |               |
|      |                        |         |               |               |               |
|      | Difference in mass     | 1       | 40.1170       | 40.0921       | 40.0069       |
|      | (g)                    | 2       | 40.1700       | 39.9917       | 40.0496       |
|      |                        | 3       | 40.1067       | 40.1052       | 39.9889       |
|      | <b></b>                |         |               |               |               |
|      |                        | 1       | 802.3         | 801.8         | 800.1         |
|      | (mass/volume (0.051))  | 2       | 803.4         | 799.8         | 801.0         |
|      | (Kg/m <sup>3</sup> )   | 3       | 802.1         | 802.1         | 799.8         |
|      |                        | Average | 802.6         | 801.3         | 800.3         |
|      |                        |         |               |               |               |
|      | Reaction with codium   |         | no reaction   | no reaction   | no reaction   |
|      | metal                  |         | THO TEACTION  | no reaction   | no reaction   |
| sts  | Reaction with Tollens' |         | Silver mirror | Silver mirror | Silver mirror |
| te   | solution               |         | forms         | forms         | forms         |
| lica |                        |         | 445           | 444           | 444           |
| lem  | derivative (%)         |         | 115           | 114           | 114           |
| ర    |                        | 1       | 116           | 115           | 117           |
|      |                        |         | 110           |               | 117           |
|      |                        | 2       | 116           | 11/           | 116           |

| Melting point of    | 3       | 115   | 117   | 115   |
|---------------------|---------|-------|-------|-------|
| purified derivative | Average | 115.7 | 116.3 | 116.0 |
| (°C)                |         |       |       |       |

## Density Calculations:

The mass of the compound was found using weighing by difference. The mass of the empty beaker was taken away from the mass of the beaker containing the compound to find the mass of the compound. Then the density was calculated by dividing the mass by the volume of the compound. Example calculation using data from the 1<sup>st</sup> repeat of 1<sup>st</sup> replicate:

Mass of beaker and compound – Mass of beaker = Mass of compound 95.4832 g - 55.3662 g = 40.1170g Mass of compound  $\div$  Volume of compound = Density 40.1170 g  $\div$  0.05000 m<sup>3</sup> = 802.3 kg/m<sup>3</sup>

**IR** Spectra



## **Candidate 2: Iron tablets**

### **Experimental Procedure**

### <u>Kit List</u>

- 4 different types of ferrous sulphate tablets
- 1.5 moll<sup>-1</sup> sulfuric acid
- 0.01 moll<sup>-1</sup> potassium manganate (VII)
- Deionised water
- Pestle and mortar
- Weighing boat
- Electronic balance
- 250 cm<sup>3</sup> beaker
- Filter funnel and paper
- 250cm<sup>3</sup> volumetric flask
- 25cm<sup>3</sup> pipette
- 50cm<sup>3</sup> burette
- 250cm<sup>3</sup> conical flask
- A white tile
- Wash bottle
- 100cm<sup>3</sup> conical flask and stopper
- 100cm<sup>3</sup> measuring cylinder

## Stage 1- Preparation of Iron Tablet Solutions

5 iron tablets of one brand were weighed using an electronic balance. These tablets were then transferred into a mortar and were crushed carefully making sure not to lose any of the crushed tablets. Once the tablets were crushed into a fine powder they were transferred into a 100cm<sup>3</sup> conical flask along with 50cm<sup>3</sup> sulfuric acid. Some of the sulfuric acid was used to rinse the mortar and pestle. These rinsings were also transferred into the conical flask. The flask was stoppered and inverted multiple times before being put aside for 24 hrs to allow the tablets to dissolve fully. The following day the solution was filtered into a 250cm<sup>3</sup> volumetric flask using filter paper and filter funnel. Deionised water was used to rinse the original conical flask and these rinsings were also filtered. Deionised water was used to make the solution up to the mark on the 250cm<sup>3</sup> volumetric flask. The flask was inverted several times to ensure the solution was mixed well. This whole process was repeated for each brand of tablet.

## Stage 2- Redox Titration

The pipette, burette and conical flask were all washed with deionised water. Then the burette was rinsed with potassium manganate (VII) and the pipette was rinsed with the iron tablet solution. Using the pipette filler, the pipette was filled with iron tablet solution and this was transferred to a 250cm<sup>3</sup> conical flask. The solution was acidified by adding about 25cm<sup>3</sup> sulfuric acid to the conical flask. The burette was then filled with potassium manganate (VII) solution and allowed to slowly run into the burette. While the potassium manganate (VII) ran into the conical flask the contents of the flask was swirled. The titration was carried out until the colour changed from pink/purple to colourless. The potassium manganate (VII) is so intense that the top of the meniscus was used to measure the volumes. For each brand of tablet a rough titration was carried out and then further titrations were done until 2 concordant results were achieved.

## Results

## Type 1 – Actavis

First Titration:

|                                                               | Titre (cm <sup>3</sup> ) |       |        |       |
|---------------------------------------------------------------|--------------------------|-------|--------|-------|
|                                                               | Rough                    | First | Second | Third |
| Initial burette<br>reading (cm <sup>3</sup> )                 | 0.6                      | 12.4  | 24.0   | 36.1  |
| Final burette<br>reading(cm <sup>3</sup> )                    | 12.4                     | 24.0  | 36.1   | 48.0  |
| Volume of KMnO <sub>4</sub><br>(cm <sup>3</sup> )             | 11.8                     | 11.6  | 12.1   | 11.9  |
| Average volume<br>of concordant<br>results (cm <sup>3</sup> ) | 12.0                     |       |        |       |
| Replicate:                                                    |                          |       |        |       |

|                                                               |       | Titre (cm³) |        |  |  |
|---------------------------------------------------------------|-------|-------------|--------|--|--|
|                                                               | Rough | First       | Second |  |  |
| Initial burette reading<br>(cm <sup>3</sup> )                 | 0.2   | 12.2        | 24.4   |  |  |
| Final burette<br>reading(cm <sup>3</sup> )                    | 12.2  | 24.4        | 36.5   |  |  |
| Volume of KMnO <sub>4</sub><br>(cm <sup>3</sup> )             | 12.0  | 12.2        | 12.1   |  |  |
| Average volume of<br>concordant results<br>(cm <sup>3</sup> ) | 12.2  |             |        |  |  |

## Type 2- Actavis

First Titration:

|                                                               |       | Titre (cm³) |        |  |  |
|---------------------------------------------------------------|-------|-------------|--------|--|--|
|                                                               | Rough | First       | Second |  |  |
| Initial burette reading<br>(cm <sup>3</sup> )                 | 27.7  | 11.8        | 24.0   |  |  |
| Final burette<br>reading(cm <sup>3</sup> )                    | 39.7  | 24.0        | 36.0   |  |  |
| Volume of KMnO <sub>4</sub><br>(cm <sup>3</sup> )             | 12.0  | 12.2        | 12.0   |  |  |
| Average volume of<br>concordant results<br>(cm <sup>3</sup> ) | 12.1  |             |        |  |  |

Replicate:

|                                                               |       | Titre (cm <sup>3</sup> ) |        |  |
|---------------------------------------------------------------|-------|--------------------------|--------|--|
|                                                               | Rough | First                    | Second |  |
| Initial burette reading<br>(cm <sup>3</sup> )                 | 13.7  | 25.8                     | 23.0   |  |
| Final burette<br>reading(cm <sup>3</sup> )                    | 25.8  | 38.3                     | 35.3   |  |
| Volume of KMnO₄<br>(cm³)                                      | 12.1  | 12.5                     | 12.3   |  |
| Average volume of<br>concordant results<br>(cm <sup>3</sup> ) | 12.4  |                          |        |  |

## Type 3- Actavis

First Titration:

|                                                               | Titre (cm <sup>3</sup> ) |       |        |  |
|---------------------------------------------------------------|--------------------------|-------|--------|--|
|                                                               | Rough                    | First | Second |  |
| Initial burette reading<br>(cm <sup>3</sup> )                 | 0.2                      | 12.0  | 23.8   |  |
| Final burette<br>reading(cm <sup>3</sup> )                    | 12.0                     | 23.8  | 35.7   |  |
| Volume of KMnO₄<br>(cm³)                                      | 11.8                     | 11.8  | 11.9   |  |
| Average volume of<br>concordant results<br>(cm <sup>3</sup> ) | 11.9                     |       |        |  |

Replicate:

|                                                               |       | Titre (cm <sup>3</sup> ) |        |  |  |
|---------------------------------------------------------------|-------|--------------------------|--------|--|--|
|                                                               | Rough | First                    | Second |  |  |
| Initial burette reading<br>(cm <sup>3</sup> )                 | 12.9  | 25.2                     | 1.2    |  |  |
| Final burette<br>reading(cm <sup>3</sup> )                    | 25.2  | 37.7                     | 13.7   |  |  |
| Volume of KMnO₄<br>(cm³)                                      | 12.3  | 12.5                     | 12.5   |  |  |
| Average volume of<br>concordant results<br>(cm <sup>3</sup> ) | 12.5  |                          |        |  |  |

Type 4- Wockhardt

First Titration:

|                                                               |       | Titre (cm <sup>3</sup> ) |        |  |  |
|---------------------------------------------------------------|-------|--------------------------|--------|--|--|
|                                                               | Rough | First                    | Second |  |  |
| Initial burette reading<br>(cm <sup>3</sup> )                 | 0.3   | 12.4                     | 29.2   |  |  |
| Final burette<br>reading(cm <sup>3</sup> )                    | 12.4  | 24.1                     | 40.8   |  |  |
| Volume of KMnO <sub>4</sub><br>(cm <sup>3</sup> )             | 12.1  | 11.7                     | 11.8   |  |  |
| Average volume of<br>concordant results<br>(cm <sup>3</sup> ) | 11.8  |                          |        |  |  |

Replicate:

|                                                               | Titre (cm <sup>3</sup> ) |       |        |       |
|---------------------------------------------------------------|--------------------------|-------|--------|-------|
|                                                               | Rough                    | First | Second | Third |
| Initial burette<br>reading (cm <sup>3</sup> )                 | 2.2                      | 14.3  | 25.9   | 1.0   |
| Final burette<br>reading(cm <sup>3</sup> )                    | 14.3                     | 25.9  | 38.0   | 12.9  |
| Volume of<br>KMnO₄ (cm³)                                      | 12.1                     | 11.6  | 12.1   | 11.9  |
| Average volume<br>of concordant<br>results (cm <sup>3</sup> ) | 12.0                     |       |        |       |

| Calculations                                                                                          |
|-------------------------------------------------------------------------------------------------------|
| Example Calculation for Type 1 – Actavis                                                              |
| Average volume KMnO <sub>4</sub> = 12.0 cm <sup>3</sup>                                               |
| Concentration KMnO <sub>4</sub> = 0.01 moll <sup>-1</sup>                                             |
| Volume Fe <sup>2+</sup> solution = 25 cm <sup>3</sup>                                                 |
| Moles MnO <sub>4</sub> = C x V                                                                        |
| = 0.01 x 0.012                                                                                        |
| = 1.2x10 <sup>-4</sup> moles                                                                          |
| 5 moles Fe <sup>2+</sup> : 1 mole MnO <sub>4</sub> -                                                  |
| So,                                                                                                   |
| Moles Fe <sup>2+</sup> (in 25cm <sup>3</sup> ) = 5 x 1.2 x10 <sup>-4</sup> = 6x10 <sup>-4</sup> moles |
| Moles Fe <sup>2+</sup> (in 250cm <sup>3</sup> ) = 10 x 6x10 <sup>-4</sup> = 6x10 <sup>-3</sup> moles  |
| Atomic mass Fe = 55.8                                                                                 |
| Mass of iron (in 5 tablets) = n x gfm                                                                 |
| = 6x10 <sup>-3</sup> x 55.8                                                                           |
| = 0.3348 g                                                                                            |
| Mass of iron (in one tablet) = 0.3348 /5 = <u>66.96 mg</u>                                            |
| Replicate                                                                                             |
| Mass of iron (in one tablet) = 67.80 mg                                                               |
| Average mass of iron = (66.96 + 67.80) / 2 = <u>67.38 mg</u>                                          |
|                                                                                                       |
| Type 2- Actavis                                                                                       |
| Mass of iron (in one tablet) = <u>67.52 mg</u>                                                        |
| Replicate –                                                                                           |
| Mass of iron (in one tablet) = <u>69.19mg</u>                                                         |
| Average mass of iron = (67.52 + 69.19) / 2 = 68.36 mg                                                 |

Type 3- Actavis

Mass of iron (in one tablet) = 66.12 mg

Replicate -

Mass of iron (in one tablet) = 69.75 mg

Average mass of iron = (66.12 + 69.75) / 2 = 67.94 mg

Type 4- Wockhardt

Mass of iron (in one tablet) = 65.57 mg

Replicate -

Mass of iron (in one tablet) = 66.96 mg

Average mass of iron = (65.57 + 66.96) / 2 = 66.27 mg

## Summary of Results :

| Tablet Type | Average mass of iron (mg) |
|-------------|---------------------------|
| 1           | 67.38                     |
| 2           | 68.36                     |
| 3           | 67.94                     |
| 4           | 66.27                     |



## Candidate 3: Ink analysis



Replicate 1:

Fig.6 Replicate 1 Thin Layer Chromatography Plates

Distance travelled by solvent in control plate (spots 1-3)= 60mm Distance travelled by solvent in unknown plate (spots 4-7)= 62mm

Rf Calculation:

Spot 1:distance traveled by substance= 26mm Rf= 26/60 Rf=0.43

| Number<br>corresponding to<br>spot | Distance travelled by substance (mm) | Retardation<br>factor (Rf)<br>Value |
|------------------------------------|--------------------------------------|-------------------------------------|
| 1                                  | 26                                   | 0.43                                |
| 2                                  | 48                                   | 0.80                                |
| 3                                  | 41                                   | 0.68                                |
| 4                                  | 23                                   | 0.37                                |
| 5                                  | 47                                   | 0.76                                |
| 6                                  | 24                                   | 0.39                                |
| 7                                  | 43                                   | 0.69                                |

## Replicate 2:





Distance travelled by solvent in control plate (spots 1-3) = 65 Distance travelled by solvent in unknown plate (spots 4-7) = 64

| Number<br>corresponding to<br>spot | Distance travelled by substance (mm) | Retardation<br>factor (Rf)<br>Value | Average Rf<br>(Rep.1+2) |
|------------------------------------|--------------------------------------|-------------------------------------|-------------------------|
| 1                                  | 6                                    | 0.09                                | 0.26                    |
| 2                                  | 47                                   | 0.72                                | 0.76                    |
| 3                                  | 32                                   | 0.49                                | 0.59                    |
| 4                                  | 6                                    | 0.09                                | 0.23                    |
| 5                                  | 52                                   | 0.81                                | 0.79                    |
| 6                                  | 5                                    | 0.08                                | 0.24                    |
| 7                                  | 29                                   | 0.45                                | 0.57                    |

Spots 1, 4 and 6 are all the same peach colour and similar average Retardation factor values ranging from 0.23 to 0.26. This suggests that control B is in both samples X and Y. Spots 2 and 5 could be argued to be the same since its is previously suggested that control B is in sample Y therefore spot 5 is a mixture of spot 2 and the pale pink colour at the similar point. Spots 2 and 5 also have similar averageRf values with a difference of 0.03. Spots 3 and 7 are the same dark yellow colour and have similar average Retardation factor values with the difference of 0.02 so could be considered the same substance.

# Candidate 4: Calcium in milk

5. <u>Results:</u>

Raw Data:

Skimmed Milk

## Trial 1

|       | Initial Reading | Final Reading | Titre Volume |
|-------|-----------------|---------------|--------------|
| Rough | 1.1             | 11.2          | 10.1         |
| 1     | 13.9            | 24.0          | 10.1         |
| 2     | 24.0            | 34.1          | 10.1         |
| 3     | 34.1            | 44.3          | 10.2         |

### Trial 2

|       | Initial Reading | Final Reading | Titre Volume |
|-------|-----------------|---------------|--------------|
| Rough | 2.2             | 13.1          | 10.9         |
| 1     | 21.3            | 32.6          | 11.3         |
| 2     | 32.6            | 43.9          | 11.3         |
| 3     | 8.5             | 19.9          | 11.4         |

## Semi skimmed Milk

### Trial 1

|       | Initial Reading | Final Reading | Titre Volume |
|-------|-----------------|---------------|--------------|
| Rough | 2.5             | 9.1           | 6.6          |
| 1     | 10.5            | 20.0          | 9.5          |
| 2     | 20.0            | 29.5          | 9.5          |
| 3     | 29.5            | 39.0          | 9.5          |

#### Trial 2

|       | Initial Reading | Final Reading | Titre Volume |
|-------|-----------------|---------------|--------------|
| Rough | 3.5             | 13.5          | 10.0         |
| 1     | 15.2            | 25.9          | 10.7         |
| 2     | 26.4            | 37.1          | 10.7         |
| 3     | 13.2            | 23.9          | 10.7         |

Whole Milk:

Trial 1

|       | Initial Reading | Final Reading | Titre Volume |
|-------|-----------------|---------------|--------------|
| Rough | 5.7             | 15.0          | 9.3          |
| 1     | 15.0            | 24.4          | 9.4          |
| 2     | 24.4            | 33.8          | 9.4          |
| 3     | 33.8            | 43.2          | 9.4          |

### Trial 2

|       | Initial Reading | Final Reading | Titre Volume |
|-------|-----------------|---------------|--------------|
| Rough | 6.3             | 15.8          | 9.5          |
| 1     | 15.8            | 25.0          | 9.2          |
| 2     | 25.0            | 34.2          | 9.2          |
| 3     | 34.2            | 43.5          | 9.3          |

## Calcium Chloride Control:

### Trial 1

|       | Initial Reading | Final Reading | Titre Volume |
|-------|-----------------|---------------|--------------|
| Rough | 1.0             | 12.5          | 11.5         |
| 1     | 12.5            | 24.0          | 11.5         |
| 2     | 24.0            | 35.5          | 11.5         |
| 3     | 35.5            | 47.0          | 11.5         |

## Trial 2

|       | Initial Reading | Final Reading | Titre Volume |
|-------|-----------------|---------------|--------------|
| Rough | 2.4             | 14.2          | 11.8         |
| 1     | 14.2            | 25.6          | 11.4         |
| 2     | 25.6            | 36.9          | 11.3         |
| 3     | 7.2             | 18.6          | 11.4         |



#### Processing Results:

Table shows the Calcium Ion Concentration in different Milk and Calcium Chloride control:

|              | Trial 1                                            | Trial 2                               | Average                                            |
|--------------|----------------------------------------------------|---------------------------------------|----------------------------------------------------|
| Milk Type    | Calcium ion<br>concentration (moll <sup>-1</sup> ) | Calcium ion<br>concentration (moll-1) | Calcium ion<br>concentration (moll <sup>-1</sup> ) |
| Whole        | 0.0376                                             | 0.0369                                | 0.0373                                             |
| Semi skimmed | 0.0380                                             | 0.0428                                | 0.0404                                             |
| Skimmed      | 0.0405                                             | 0.0453                                | 0.0429                                             |
| Control      | 0.0460                                             | 0.0454                                | 0.0457                                             |



Graph 1 -- The average calcium ion concentration in different milk samples

# **Candidate 5: Piperine in pepper**

| Results:    |  |
|-------------|--|
| Deve Devela |  |

| caw Results: |                                 |                                                |                                     |                                 |                                                             |                                     |                          |
|--------------|---------------------------------|------------------------------------------------|-------------------------------------|---------------------------------|-------------------------------------------------------------|-------------------------------------|--------------------------|
| Experiment   | Mass of<br>Weighing<br>Boat (g) | Mass of<br>Weighing<br>Boat +<br>Pepper<br>(g) | Initial<br>Mass of<br>Pepper<br>(g) | Mass of<br>Weighing<br>Boat (g) | Mass of<br>Weighing<br>Boat +<br>Mass of<br>Piperine<br>(g) | Final<br>Mass of<br>Piperine<br>(g) | Melting<br>Point<br>(°C) |
| 1            | 1.6118                          | 11.6158                                        | 10.0040                             | 1.6118                          | 2.1357                                                      | 0.5239                              | 120-                     |
| 2            | 1.6132                          | 11.5992                                        | 9.9860                              | 1.6132                          | 2.5247                                                      | 0.9115                              | 122-                     |

## Percentage Mass Calculations:

Experiment 1:

$$\% Mass = \frac{Mass of Piperine}{Mass of Pepper} \times 100$$
$$= \frac{0.5239}{10.004} \times 100$$

= 5.24%

Experiment 2:

$$\% Mass = \frac{Mass of Piperine}{Mass of Pepper} \times 100$$
$$= \frac{0.9115}{9.9860} \times 100$$

= 9.13%

## Final Results:

| Experiment | Percentage Mass of<br>Piperine in Black Pepper<br>(%) | Percentage<br>Uncertainty<br>(± %) | Melting Point (□C) |
|------------|-------------------------------------------------------|------------------------------------|--------------------|
| 1          | 5.24                                                  | 0.002                              | 120-123            |
| 2          | 9.13                                                  | 0.001                              | 122-125            |

## Candidate 6: Aspirin

#### 2.2 Results

#### Table 1 – Values from titration of Flask #1

|                                   | 1 <sup>st</sup> Titre | 2 <sup>nd</sup> titre | 3 <sup>rd</sup> titre |
|-----------------------------------|-----------------------|-----------------------|-----------------------|
| Start volume of                   | 0.1                   | 9.3                   | 17.6                  |
| sulphuric acid (cm <sup>3</sup> ) |                       |                       |                       |
| End volume of                     | 9.3                   | 17.6                  | 25.9                  |
| sulphuric acid (cm³)              |                       |                       |                       |
| Volume of sulphuric               | 9.2                   | 8.3                   | 8.3                   |
| acid added (cm <sup>3</sup> )     |                       |                       |                       |

Mass of aspirin in the 3 tablets = 1.503g

Total mass of the 3 tablets = 1.7531g

Mean titre volume = 8.3cm<sup>3</sup>

Percentage of aspirin in the aspirin tablets = 85.7%

#### Table 2 – Values from titration of Flask #2

|                                | 1 <sup>st</sup> Titre | 2 <sup>nd</sup> titre |
|--------------------------------|-----------------------|-----------------------|
| Start point (cm <sup>3</sup> ) | 0.3                   | 8.7                   |
| End point (cm³)                | 8.7                   | 17.0                  |
| Volume (cm³)                   | 8.4                   | 8.3                   |

Mass of aspirin in 3 tablets = 1.4985g

Total mass of the 3 tablets =1.8192g

Mean titre volume = 8.35cm<sup>3</sup>

Percentage of aspirin in the aspirin tablets =82.4%

#### Example calculations

- Flask #1 titration calculations

 $n \text{ of sulfuric acid} = cv = 0.0083 \times 0.050 = 0.000415 \text{ mol}$ 

n of NaOH (left in 25ml of the hydrolysed solution) =  $2 \times 0.000415 = 0.00083$  mol

(1 mole of sulfuric acid reacts with 2 moles of NaOH)

 $n \text{ of } NaOH \text{ in } 250ml = 10 \times 0.00083 = 0.0083 \text{ mol}$ 

n of NaOH added to the aspirin tablets originally =  $0.025 \times 1 = 0.025$  mol

n of NaOH that reacted with the aspirin tablets = 0.025 - 0.0083 = 0.0167 mol

(2 moles of NaOH react with 1 mole of aspirin)

*n of aspirin in sample* =  $\frac{0.0167}{2}$  = 0.00835 *mol* 

 $m \ of \ aspirin \ in \ sample = 0.00835 \times 180 = 1.503g$ 

% by mass of aspirin in the tablets =  $\frac{1.503}{1.7531} \times 100 = 85.7\%$